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Abstract

This paper continues the exploration of properties concerning involution pseudoknot-
(un)bordered words for a morphic involution or an antimorphic involution. Involution
pseudoknot-(un)bordered words are a generalization of the classical notions of bor-
dered and unbordered words. There are some results obtained in this paper. Let θ be
an antimorphic involution. We prove that, under some conditions, Lθ

d(w) = Lθ
cd(w)

where Lθ
d(w) denotes the set of all proper θ-borders of a nonempty word w and Lθ

cd(w)
denotes the set of all θ-pseudoknot-borders of a nonempty word w. We also get that for
a nonempty skew θ-palindrome word, it is θ-pseudoknot-bordered, and find that for ev-
ery θ-pseudoknot-unbordered word w, the root of w is also θ-pseudoknot-unbordered.
Moreover, we show that Dθ(i) and Kθ(i) for every i ≥ 2 are dense, where Dθ(i) de-
notes the sets of words that have exactly i θ-borders and Kθ(i) denotes the sets of
words that have exactly i θ-pseudoknot-borders.

Keywords: Palindrome, Skew Involution Palindrome, Involution Unbordered
Words, Dense.

1 Introduction

We view a DNA single strand as a string over the DNA alphabet of bases {A,C,G, T}.
DNA single strands have a necessary biochemical property which is the Watson-Crick com-
plementarity, wherein A can bind to T and C can bind to G. DNA single strands which are
the Watson-Crick complementarity often result the secondary structures. The secondary
structures of DNA single strands are either folding onto themselves to form intra-molecular
structure, or interacting with each other to form inter-molecular structure. When encoding
data on DNA strands, it needs to avoid the secondary structures of DNA strands because the
secondary structures make DNA strands unavailable for biocomputations. Consequently,
there are many studies [8-11] relating to the property of unwanted intra-molecular and
inter-molecular structures from many different points of view. Kari and Mahalingam ([4])
introduced and investigated the concept of a θ-unbordered word that avoid some of com-
mon inter-molecular and intra-molecular structures where θ is an antimorphic involution.
A θ-bordered word w is a nonempty word which has a proper prefix u, and a proper suffix
θ(u), that is, w = uα = βθ(u) for some nonempty words α, β. The notions of θ-bordered
and θ-unbordered words are generalizations of classical notions in combinatorics of words.
Furthermore, the pseudoknot is formed by RNA strands, it is another significant intra-
molecular structure. The type of pseudoknot found in E. Coli transfer-messenger-RNA
([3]). It can be modeled as a nonempty word w using the form u1xu2yu3θ(x)u4θ(y)u5, that
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is, w = u1xu2yu3θ(x)u4θ(y)u5. In the design of DNA strands used for computational pur-
poses, the involution pseudoknot-unbordered words are models of DNA or RNA strands
that will not form pseudoknot inter-molecular and intra-molecular structures. We will in-
vestigate involution pseudoknot-bordered (or θ-pseudoknot-bordered) words and involution
pseudoknot-unbordered (or θ-pseudoknot-bordered) words for an antimorphic involution θ
in this paper. A nonempty word w is θ-pseudoknot-bordered if w = xyα = βθ(yx) for some
nonempty words x, y, α, β ([8]). Note that this is a special case of the general model of
pseudoknots with u1, u2, u4, u5 being empty words.

This paper consists of four sections. The first section is an overview of this study. The
second section includes some well-known definitions and applied properties. We observe
some examples to get the concept concerning involution pseudoknot-(un)bordered words
and involution (un)bordered words in the third section. Form those observations, we prove
that, under some conditions, Lθ

d(w) = Lθ
cd(w). We find that every nonempty skew θ-

palindrome word is θ-pk-bordered. Since every θ-palindrome word is a skew θ-palindrome
word, this follows that θ-palindrome word is also θ-pk-bordered. We get that for every
θ-pk-unbordered word w, the root of w is also a θ-pk-unbordered when θ is an antimorphic
involution on X∗. A procedure to create θ-pk-bordered words is provided. We study the
density of involution bordered languages and involution pseudoknot-bordered languages in
the final section. It can be proved that Dθ(i) and Kθ(i) for every i ≥ 1 are dense.

2 Preliminaries

Let X be a finite alphabet and X∗ be the free monoid generated by X. Any element of
X∗ is called a word. The length of a word w is denoted by lg(w). Any subset of X∗ is called
a language. Let X+ = X∗ \ {λ}, where λ is the empty word. Let |L| denote the cardinality
of language L. A primitive word is a word which is not a power of any other word. Let Q
be the set of all primitive words over X. Every word u ∈ X+ can be expressed as a power of
a primitive word in a unique way, that is, for any u ∈ X+, u = fn for a unique f ∈ Q and
n ≥ 1. In this case, f is the primitive root of u and denoted by

√
u = f. Let u = a1a2 · · · an

where ai ∈ X. The reverse of the word u is uR = an · · · a2a1. A word u is called palindrome
if u = uR. Let R be the set of all palindrome words over X. A word u ∈ X∗ is said to
be a border of a word w ∈ X∗ if w = xu = uy for some x, y ∈ X∗. A word u ∈ X∗ is a
conjugate of another word w ∈ X∗ if there exists v ∈ X∗ such that uv = vw. The partial
order relation ≤p (resp., ≤s) is defined as: for u, v ∈ X∗, v ≤p u (resp., v ≤s u) if and only
if u ∈ vX∗ (resp., u ∈ X∗v). Moreover, the partial order relation <p (resp., <s) is defined
as: for u, v ∈ X+, v <p u (resp., v <s u) if and only if u ∈ vX+ (resp., u ∈ X+v).

An involution θ : S → S of S ⊆ X∗ is a mapping such that θ2 = I where I is the
identity mapping. A mapping α : X∗ → X∗ is a morphism of X∗ if for all u, v ∈ X∗,
α(uv) = α(u)α(v) or an antimorphism of X∗ if α(uv) = α(v)α(u). For instance, let X =
{A,C,G, T} and u = AACGT . If θ is an antimorphic involution on X∗ which maps A
to T,C to G, and vice versa, then θ(u) = θ(T )θ(G)θ(C)θ(A)θ(A) = ACGTT. If θ is
a morphic involution on X∗ which maps A to T,C to G, and vice versa, then θ(u) =
θ(A)θ(A)θ(C)θ(G)θ(T ) = TTGCA. We now recall some definitions introduced by Kari and
Mahalingam ([4]-[7]). Throughout the paper we assume that the alphabet X is such that
|X| ≥ 2 and the involution θ is not the identity function.

Definition 2.1 Let θ be either a morphic or an antimorphic involution on X∗. A word
w ∈ X∗ is a θ-conjugate of another word u ∈ X∗ if uv = θ(v)w for some v ∈ X∗.
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For instance, let X = {A,C,G, T}, u = ACT , and θ is an antimorphic involution on
X∗ which maps A to T,C to G, and vice versa. Then the set of θ-conjugates of u is
{ACT,CTT, TGT,AGT}.

Definition 2.2 Let θ be an antimorphic involution on X∗.

(1) A word w ∈ X∗ is called a θ-palindrome word if w = θ(w).

(2) A word w is said to be skew θ-palindrome if w = xy implies that θ(w) = yx for some
x, y ∈ X∗.

Note that every θ-palindrome word is a skew θ-palindrome word because any θ-palindrome
word as a product of itself and the empty word λ. The inverse statement is not true. For
instance, let X = {A,C,G, T} and θ is an antimorphic involution on X∗ which maps A to
T,C to G, and vice versa. A word ATAT is θ-palindrome and is also a skew θ-palindrome
word. Let w = ATCG. Then w is a skew θ-palindrome word, but it is not θ-palindrome.

3 Involution pseudoknot-bordered words

In this section we study some properties of involution pseudoknot-bordered (or θ-pseudoknot-
bordered) words for a morphic involution or an antimorphic involution θ on X∗. The notion
of θ-pseudoknot-bordered word ([5],[8]) is a proper generalization of the notion of θ-bordered
word ([4],[6]). Let θ be a morphic involution or an antimorphic involution on X∗. A word
u ∈ X∗ is said to be a proper θ-border of a word w ∈ X+ if u is a proper prefix of w and
θ(u) is a proper suffix of w, i.e., w = uα = βθ(u) for some α, β ∈ X+. Let Lθ

d(w) denote the
set of all proper θ-borders of a word w ∈ X+. Note that λ ∈ Lθ

d(w) for all w ∈ X+. A word
w ∈ X+ is said to be θ-bordered if it has a proper θ-border other than λ, i.e., |Lθ

d(w)| ≥ 2;
otherwise, it is θ-unbordered. Moreover, Dθ(i) = {w ∈ X+| |Lθ

d(w)| = i} for every i ≥ 1
where Dθ(1) is the set of all θ-unbordered words.

For a word u ∈ X∗, a word v ∈ X∗ is called a cyclic permutation of u if there exist two
words x, y ∈ X∗ such that u = xy and v = yx. A word u ∈ X∗ is called a θ-pseudoknot-
border (or θ-pk-border) of a word w ∈ X+ if there exists a cyclic permutation v of u
such that w = uα′ = β′θ(v) for some α′, β′ ∈ X∗. Then we have w = xyα′ = β′θ(yx)
for some α′, β′ ∈ X∗. Let Lθ

cd(w) denote the set of all θ-pk-borders of a word w ∈ X+

and Kθ(i) = {w ∈ X+| |Lθ
cd(w)| = i} for every i ≥ 1. A nonempty word is θ-pseudoknot-

bordered (or θ-pk-bordered) if it has a nonempty θ-pk-border; otherwise, it is θ-pseudoknot-
unbordered. Note that λ ∈ Lθ

cd(w) for all w ∈ X+. Then Kθ(1) is the set of all θ-pk-
unbordered words.

Example 1 Let X = {a, b} be an alphabet. Let θ be an antimorphic involution on X∗

with θ(a) = b and θ(b) = a.

(1) Let w1 = aabb. Note that w1 is a θ-palindrome word. We study the following procedure
to get Lθ

d(w1).

− w1 = λ · aabb = aabb · θ(λ); w1 = a · abb = aab · θ(a); w1 = aa · bb = aa · θ(aa);
w1 = aab · b = a · θ(aab).

Then Lθ
d(w1) = {λ, a, aa, aab}.

Moreover, we study the following procedure to get Lθ
cd(w1).

− w1 = λ · aabb = aabb · θ(λ).
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− w1 = λ · a · abb = aab · θ(λ) · θ(a); w1 = a · λ · abb = aab · θ(a) · θ(λ).

− w1 = λ · aa · bb = aa · θ(λ) · θ(aa); w1 = a · a · bb = aa · θ(a) · θ(a);
w1 = aa · λ · bb = aa · θ(aa) · θ(λ).

− w1 = λ · aab · b = a · θ(λ) · θ(aab); w1 = a · ab · b ̸= a · θ(a) · θ(ab) = abab;

w1 = aa · b · b ̸= a · θ(aa) · θ(b) = abba; w1 = aab · λ · b = a · θ(aab) · θ(λ).

− w1 = λ · aabb · λ = λ · θ(λ) · θ(aabb); w1 = a · abb · λ ̸= λ · θ(a) · θ(abb) = baab;

w1 = aa · bb · λ ̸= λ · θ(aa) · θ(bb) = bbaa; w1 = aab · b · λ ̸= λ · θ(aab) · θ(b) = abba;

w1 = aabb · λ · λ = λ · θ(aabb) · θ(λ).

Then Lθ
cd(w1) = {λ, a, aa, aab, aabb}. Thus Lθ

d(w1) ⊂ Lθ
cd(w1). We have w1 ∈ Dθ(4) and

w1 ∈ Kθ(5).

(2) Let w2 = aab. Lθ
d(w2) = {λ, a} and Lθ

cd(w2) = {λ, a}. Thus Lθ
d(w2) = Lθ

cd(w2). We have
w2 ∈ Dθ(2) and w2 ∈ Kθ(2).

(3) Let w3 = aa. Lθ
d(w3) = {λ} and Lθ

cd(w3) = {λ}. Thus Lθ
d(w3) = Lθ

cd(w3). We have
w3 ∈ Dθ(1) and w3 ∈ Kθ(1).

(4) Let w4 = aba. Lθ
d(w4) = {λ} and Lθ

cd(w4) = {λ, ab}. Thus Lθ
d(w4) ⊂ Lθ

cd(w4). We have
w4 ∈ Dθ(1) and w4 ∈ Kθ(2), that is, w4 /∈ Kθ(1).

In the following proposition, we prove that, under some conditions, Lθ
d(w) = Lθ

cd(w) where
θ is an antimorphic involution on X∗.

Lemma 3.1 ([8]) Let θ be an antimorphic involution on X∗ and w ∈ X+. Then Lθ
d(w) ⊆

Lθ
cd(w) and Kθ(1) ⊆ Dθ(1).

Proposition 3.1 Let θ be an antimorphic involution on X∗ and w ∈ X+. Then Lθ
d(w) =

Lθ
cd(w) for every w ∈ Dθ(1) ∩Kθ(1).

Proof. Let θ be an antimorphic involution on X∗ and w ∈ X+. Let w ∈ Dθ(1)∩Kθ(1). By
Lemma 3.1, Kθ(1) ⊆ Dθ(1). It follows that w ∈ Kθ(1). Suppose that Lθ

d(w) ⊂ Lθ
cd(w). By

the definition of involution pseudoknot-unbordered words, we have Lθ
cd(w) = {λ}, that is,

|Lθ
cd(w)| = 1. This implies that |Lθ

d(w)| < 1, a contradiction. Then by Lemma 3.1 again,
we have Lθ

d(w) = Lθ
cd(w). #

The set of all cyclic permutations of w is Cp(w) = {yx|w = xy, x, y ∈ X∗}. For instance,
let w = abba. Then Cp(w) = {abba, aabb, baab, bbaa}.

Proposition 3.2 Let X = {a, b}, θ be an antimorphic involution on X∗ with θ(a) =
b, θ(b) = a, and w ∈ X+. Then Lθ

d(w) = Lθ
cd(w) if for every x, y ∈ X∗ such that xy ≤p w

one has θ(yx) ̸≤s w.

Proof. Let w ∈ X+ and θ be an antimorphic involution on X∗ with θ(a) = b, θ(b) = a. Let
u = xy and v = yx ∈ Cp(u) for some x, y ∈ X∗. If xy ≤p w such that θ(yx) ̸≤s w, then
from the definition of involution pseudoknot-bordered words, Lθ

cd(w) = {λ}. By Lemma
3.1, Lθ

d(w) ⊆ Lθ
cd(w) implies that Lθ

d(w) = Lθ
cd(w). #

For a word w ∈ X+, let Pref(w) = {v ∈ X+ | v ≤p w} and Suff(w) = {v ∈ X+ | v ≤s w}.

Proposition 3.3 Let θ be an antimorphic involution on X∗ and w ∈ X+. If Lθ
d(w) =

Lθ
cd(w), then one of the following conditions holds:
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(1) w ∈ Kθ(1).

(2) w /∈ Lθ
cd(w) and θ(Cp(Pref(w))) ∩ Suff(w) = θ(Pref(w)) ∩ Suff(w) ̸= ∅.

Proof. Let θ be an antimorphic involution on X∗ and w ∈ X+. Assume that Lθ
d(w) =

Lθ
cd(w). If L

θ
d(w) = Lθ

cd(w) = {λ}, then w ∈ Dθ(1) and w ∈ Kθ(1). Thus Condition (1)
holds. If Lθ

d(w) = Lθ
cd(w) ̸= {λ}, then there exists a word u ∈ X+ such that all the

following conditions are true.

(a) w = uα1 = β1θ(u) for some α1, β1 ∈ X+.

(b) w = xyα2 = β2θ(yx) for some x, y ∈ X∗ with u = xy ̸= λ and α2, β2 ∈ X∗.
From condition (a), since α1, β1 ∈ X+, we have u ̸= w. It follows that w /∈ Lθ

d(w).
This in conjunction with Lθ

d(w) = Lθ
cd(w) yields that w /∈ Lθ

cd(w). Moreover form condition
(b), there exists a word u = xy ∈ X+ such that θ(u) ∈ θ(Cp(Pref(w))) ∩ Suff(w). Since
Lθ

d(w) = Lθ
cd(w), it implies that θ(u) ∈ θ(Pref(w)) ∩ Suff(w). Thus θ(Cp(Pref(w))) ∩

Suff(w) = θ(Pref(w)) ∩ Suff(w) ̸= ∅. Then Condition (2) holds. #

A word u is called palindrome if it is the mirror image of itself. The notion of involution
palindrome (or θ-palindrome) was studied in ([6], [9]). A language consisting of involu-
tion palindrome words is defined as an involution palindrome language. Besides involution
palindrome words being considered, some algebraic properties of skew involution palindrome
words are studied in [2]. We investigate the relation between θ-palindrome words and θ-pk-
bordered words in the following context.

Lemma 3.2 ([8]) Let θ be an antimorphic involution on X∗, and x, y be θ-palindromes such
that xy ̸= λ. If a word u ∈ X+ has xy as both its prefix and suffix, then u is θ-pk-bordered.

Lemma 3.3 ([2]) Let θ be an antimorphic involution on X∗. A word w is skew θ-palindrome
if and only if w is a product of two θ-palindrome words.

From the above lemmata, the following result is clear.

Lemma 3.4 Let θ be an antimorphic involution on X∗. Then every nonempty skew θ-
palindrome word is θ-pk-bordered.

Proof. Let w ∈ X+ be a skew θ-palindrome word. By Lemma 3.3, there exist x, y are
θ-palindrome words such that w = xy. That is, xy is a prefix of w and also a suffix of w.
This in conjunction with Lemma 3.2 yields that w is θ-pk-bordered. #

From Lemma 3.4 and Proposition 3.3, we now have the following corollary.

Corollary 3.1 Let θ be an antimorphic involution on X∗ and w ∈ X+. If w is a skew
θ-palindrome word, then Lθ

d(w) ̸= Lθ
cd(w).

Since a θ-palindrome word is a skew θ-palindrome word, the following result is also true.

Corollary 3.2 Let θ be an antimorphic involution on X∗ and w ∈ X+. If w is a θ-
palindrome word, then Lθ

d(w) ̸= Lθ
cd(w).

Let w ̸∈ Q. Then w = fk, f ∈ Q, k ≥ 2. The primitive root of w is denoted by
√
w = f .

Lemma 3.5 ([7]) Let θ be a morphic or an antimorphic involution on X∗. For all w ∈ X+,
w is θ-palindrome if and only if

√
w is θ-palindrome.
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Note that θ-palindrome words are θ-pk-bordered. By Lemma 3.5, the primitive root of
words being θ-palindrome implies that those words are θ-pk-bordered. When we consider
the case of θ-pk-unbordered words, the the primitive root of words being θ-pk-unbordered
does not imply that those words are θ-pk-unbordered. For instance, let θ be an antimor-
phic involution on X∗ with θ(a) = b, θ(b) = a and let w = aabbbbaba. Then w ∈ Kθ(1)
and w2 /∈ Kθ(1). That is, w is a θ-pk-unbordered word and w2 is a θ-pk-bordered word.
It implies that

√
w may be a θ-pk-unbordered word for a θ-pk-bordered word w. In the

following proposition, we will show that for every θ-pk-unbordered word w,
√
w is also a

θ-pk-unbordered. For instance, a nonprimitive θ-pk-unbordered word w = a2, where a ∈ X.
It is clear that w,

√
w are θ-pk-unbordered words.

Proposition 3.4 Let θ be an antimorphic involution on X∗ and w ∈ X+. Then
√
w ∈

Kθ(1) for every w ∈ Kθ(1).

Proof. Let θ be an antimorphic involution on X∗ and w ∈ X+. If w ∈ Q ∩ Kθ(1), then
w =

√
w. It follows that

√
w ∈ Kθ(1). Now we consider w ∈ Kθ(1) ̸⊆ Q. Let w = fk

for some f ∈ Q and k ≥ 2. Then
√
w = f . Since w ∈ Kθ(1), w has no θ-pk-border

with length 1 ≤ m ≤ lg(w) = k lg(f). It follows that w has no θ-pk-border with length
m ≤ lg(

√
w) = lg(f). This implies that

√
w has no θ-pk-border with length 1 ≤ m′ ≤ lg(f).

Thus
√
w ∈ Kθ(1). #

Proposition 3.5 Let θ be a morphic involution on X∗. For all w ∈ X+, θ(Lθ
cd(w)) =

Lθ
cd(θ(w)).

Proof. Let θ be a morphic involution on X∗ and w ∈ X+. Let u ∈ Lθ
cd(w). Then θ(u) ∈

θ(Lθ
cd(w)). By the definition of involution pseudoknot-border, we have w = xyα = βθ(yx)

where u = xy ̸= λ for some x, y, α, β ∈ X∗. When θ is a morphic involution on X∗, we have

θ(w) = θ(xyα) = θ(βθ(yx))

⇔ θ(w) = θ(x)θ(y)θ(α) = θ(β)θ(θ(yx)) = θ(β)θ(θ(y)θ(x)).

Since θ(y)θ(x) ∈ Cp(θ(x)θ(y)), it follows that θ(x)θ(y) = θ(xy) = θ(u) ∈ Lθ
cd(θ(w)). Thus

θ(Lθ
cd(w)) ⊆ Lθ

cd(θ(w)). Moreover, let u′ ∈ Lθ
cd(θ(w)). Then θ(w) = x′y′α′ = β′θ(y′x′) where

u′ = x′y′ ̸= λ for some x′, y′, α′, β′ ∈ X∗. When θ is a morphic involution on X∗, we have

θ(θ(w)) = w = θ(x′y′α′) = θ(β′θ(y′x′))

⇔ w = θ(x′)θ(y′)θ(α′) = θ(β′)θ(θ(y′x′)) = θ(β′)θ(θ(y′)θ(x′)).

Since θ(y′)θ(x′) ∈ Cp(θ(x′)θ(y′)), we have θ(x′)θ(y′) = θ(x′y′) = θ(u′) ∈ Lθ
cd(w). It fol-

lows that θ(θ(u′)) = u′ ∈ θ(Lθ
cd(w)). Thus Lθ

cd(θ(w)) ⊆ θ(Lθ
cd(w)). Therefore, we have

θ(Lθ
cd(w)) = Lθ

cd(θ(w)). #

Proposition 3.5 is not true when θ is an antimorphic involution on X∗. For instance, let
θ be an antimorphic involution on X∗ where X = {a, b} with θ(a) = b and θ(b) = a. Let
w = aabbba. There is a word u = aab where x = aa and y = b. Then u ∈ Lθ

cd(w). It
follows that θ(u) = abb ∈ θ(Lθ

cd(w)). When θ is an antimorphic involution on X∗, we have
θ(w) = baaabb. This follows that baa ∈ Lθ

cd(θ(w)). Thus θ(L
θ
cd(w)) ̸= Lθ

cd(θ(w)).

Proposition 3.6 Let θ be an antimorphic involution on X∗. For all w ∈ X+, Lθ
cd(w) ⊆

Cp(Lθ
cd(θ(w))).
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Proof. Let θ be an antimorphic involution on X∗ and w ∈ X+. Let u ∈ Lθ
cd(w). By the

definition of involution pseudoknot-border, we have w = xyα = βθ(yx) where u = xy ̸= λ
for some x, y, α, β ∈ X∗. When θ is an antimorphic involution on X∗, we have

θ(w) = θ(xyα) = θ(βθ(yx))

⇔ θ(w) = θ(α)θ(xy) = θ(θ(yx))θ(β) = yxθ(β).

Then yx ∈ Lθ
cd(θ(w)). This follows that u = xy ∈ Cp(Lθ

cd(θ(w))). Thus Lθ
cd(w) ⊆

Cp(Lθ
cd(θ(w))). #

Note that if a word w is singleton, then it is θ-pk-unbordered when θ is a morphic or
an antimorphic involution on X∗. By the definition of θ-pk-bordered word, we get the
characteristic of nonempty θ-pk-bordered words in the following lemma.

Lemma 3.6 Let θ be a morphic or an antimorphic involution on X∗ and w ∈ X+ with
lg(w) ≥ 2. Then w is θ-pk-bordered if and only if θ(Cp(Pref(w))) ∩ Suff(w) ̸= ∅.

Lemma 3.7 Let θ be an antimorphic involution on X∗ and w ∈ X+ with lg(w) ≥ 2. Then
w is θ-pk-bordered if and only if θ(w) is θ-pk-bordered.

Proof. Let θ be an antimorphic involution on X∗ and w ∈ X+ with lg(w) ≥ 2. Let w is
θ-pk-bordered. Then w = uα = βθ(v) for some u, v, α, β ∈ X∗ where v ∈ Cp(u). Let
u = xy for some x, y ∈ X∗ with xy ̸= λ. Then we have w = xyα = βθ(yx). This follows
that θ(w) = θ(xyα) = θ(βθ(yx)) = θ2(yx)θ(β). Thus θ(w) = yxθ(β) = θ(α)θ(xy). By the
definition of θ-pk-bordered word, θ(w) is θ-pk-bordered. Moreover, the converse is true. #

In the following proposition, we provide a procedure to create θ-pk-bordered words.

Lemma 3.8 ([8]) Let θ be an antimorphic involution on X∗. If a word w ∈ X+ has a
θ-pk-border of length n, then, for every a ∈ X, the number of occurrences of the letter a in
the prefix of length n of w is equal to the number of occurrences of the letter θ(a) in the
suffix of length n of w.

Proposition 3.7 Let θ be an antimorphic involution on X∗ and for all a ∈ X let a ̸= θ(a).
Let w ∈ X+ with lg(w) ≥ 2. Then w is θ-pk-bordered if and only if one of the following
statements is true:

(1) w = azθ(a) for some a ∈ X and z ∈ X∗.

(2) w = xy for some x, y ∈ X+ with x = θ(x) and y = θ(y).

(3) w = xyzθ(x)θ(y) for some x, y ∈ X+ and z ∈ X∗.

(4) w = x1x2θ(x1)yx1 for some x1, x2, y ∈ X+ with x2 = θ(x2) and y = θ(y).

(5) w = x1x2θ(x1)x1 for some x1, x2 ∈ X+ with x2 = θ(x2).

(6) w = x11x12x2θ(x12)θ(x11)x12 for some x11, x12, x2 ∈ X+ with x2 = θ(x2).

(7) w = x1x2θ(x2)θ(x1)x2 for some x1, x2 ∈ X+.

(8) w = xθ(x)x for some x ∈ X+.

(9) w = θ(x1)x1x2θ(x1) for some x1, x2 ∈ X+ with x2 = θ(x2).

(10) w = θ(x21)x1x21θ(x22)θ(x21)θ(x1) for some x1, x21, x22 ∈ X+ with x22 = θ(x22).

(11) w = θ(x2)x1x2θ(x2)θ(x1) for some x1, x2 ∈ X+.

(12) w = x1θ(y2)y1y2θ(x1)θ(y2)θ(y1) for some x1, y1, y2 ∈ X+.
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Proof. Let θ be an antimorphic involution on X∗ and for all a ∈ X let a ̸= θ(a). Let w ∈ X+

with lg(w) ≥ 2. Since for all a ∈ X, a ̸= θ(a), there exists a ∈ X such that θ(a) = b, where
a ̸= b ∈ X.

(⇒) Let w is θ-pk-bordered. Then w = uα = βθ(v) for some u, v, α, β ∈ X∗ where
v ∈ Cp(u). Let u = xy for some x, y ∈ X∗ with xy ̸= λ. Then we have w = xyα = βθ(yx).
We consider the following cases:

(1) x = λ or y = λ. We consider x = λ. Then w = yα = βθ(y). Let y = ar for some
a ∈ X, r ∈ X∗. Then θ(y) = θ(ar) = θ(r)θ(a). Thus w = arα = βθ(r)θ(a). Since lg(w) ≥ 2,
this follows that w = azθ(a) for some a ∈ X and z ∈ X∗. Hence Condition (1) holds. When
y = λ, the proof is same as x = λ.

(2) x, y ̸= λ. If α = β = λ, then w = xy = θ(yx) = θ(x)θ(y). This implies that
x = θ(x) and y = θ(y). Hence Condition (2) holds. By Lemma 3.8, cases α ̸= λ, β = λ
or α = λ, β ̸= λ are omitted. We only consider the case: α ̸= λ and β ̸= λ. Then there
are the following subcases: lg(u) ≤ 1

2
lg(w) or lg(u) > 1

2
lg(w). When lg(u) ≤ 1

2
lg(w), we

have lg(u) = lg(xy) = lg(θ(x)θ(y)) ≤ 1
2
lg(w). Since w = xyα = βθ(yx) = βθ(x)θ(y), this

in conjunction with lg(α) = lg(β) ≥ 1
2
lg(w) yields that w = xyzθ(x)θ(y) for some z ∈ X∗.

Hence Condition (3) holds. When lg(u) > 1
2
lg(w), from the statement xyα = βθ(x)θ(y),

there are the following subcases:

(2-1) lg(β) < lg(x). There exist x1, x2 ∈ X+ such that x = x1x2 and β = x1. Then
θ(x)θ(y) = x2yα. Since θ(x) = θ(x2)θ(x1), this implies that x2 = θ(x2) and θ(x1)θ(y) = yα.
Next, we consider the statement θ(x1)θ(y) = yα. If lg(θ(x1)) < lg(y), then there exist
y1, y2 ∈ X+ such that y = y1y2, θ(x1) = y1 and θ(y) = y2α. Since θ(y) = θ(y2)θ(y1), this
follows that y2 = θ(y2) and θ(y1) = α. Thus w = xyα = x1x2y1y2θ(y1) = x1x2θ(x1)y2x1 with
x2 = θ(x2) and y2 = θ(y2). Hence Condition (4) holds. If lg(θ(x1)) = lg(y), then θ(x1) = y
and θ(y) = α. Thus w = xyα = x1x2yθ(y) = x1x2θ(x1)x1 with x2 = θ(x2). Hence Condition
(5) holds. If lg(θ(x1)) > lg(y), then there exist x11, x12 ∈ X+ such that x1 = x11x12, θ(x12) =
y, and θ(x11)θ(y) = α. Thus w = xyα = x1x2yθ(x11)θ(y) = x11x12x2θ(x12)θ(x11)x12 with
x2 = θ(x2). Hence Condition (6) holds.

(2-2) lg(β) = lg(x). We have β = x and yα = θ(x)θ(y). Next, we consider the statement
yα = θ(x)θ(y). If lg(y) < lg(θ(x)), then there exist x1, x2 ∈ X+ such that x = x1x2,
θ(x2) = y, and θ(x1)θ(y) = α. Thus w = xyα = xθ(x2)θ(x1)θ(y) = x1x2θ(x2)θ(x1)x2.
Hence Condition (7) holds. If lg(y) = lg(θ(x)), then θ(x) = y and θ(y) = α. Thus
w = xyα = xyθ(y) = xθ(x)x. Hence Condition (8) holds. If lg(y) > lg(θ(x)), then
there exist y1, y2 ∈ X+ such that y = y1y2, θ(x) = y1 and θ(y) = y2α. Since y = y1y2,
we have θ(y) = θ(y2)θ(y1) = y2α. This follows that θ(y2) = y2 and θ(y1) = α. Thus
w = xyα = θ(y1)y1y2θ(y1) with θ(y2) = y2. Hence Condition (9) holds.

(2-3) lg(β) > lg(x). There exist y1, y2 ∈ X+ such that y = y1y2, β = xy1, and θ(x)θ(y) =
y2α. Next, we consider the statement θ(x)θ(y) = y2α. If lg(θ(x)) < lg(y2), then there
exist y21, y22 ∈ X+ such that y2 = y21y22, θ(x) = y21, and θ(y) = y22α. Since θ(y) =
θ(y22)θ(y21)θ(y1), this in conjunction with θ(y) = y22α yields that θ(y21)θ(y1) = α and
θ(y22) = y22. Thus w = xyα = xy1y21y22α = xy1y21θ(y) = θ(y21)y1y21θ(y22)θ(y21)θ(y1)
with y22 = θ(y22). Hence Condition (10) holds. If lg(θ(x)) = lg(y2), then θ(x) = y2 and
θ(y) = α. Thus w = xyα = xyθ(y) = θ(y2)y1y2θ(y2)θ(y1). Hence Condition (11) holds.
If lg(θ(x)) > lg(y2), then there exist x1, x2 ∈ X+ such that x = x1x2, θ(x2) = y2, and
θ(x1)θ(y) = α. Thus w = xyα = xy1y2θ(x1)θ(y) = x1θ(y2)y1y2θ(x1)θ(y2)θ(y1). Hence
Condition (12) holds.

(⇐) The converse is obvious. #
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From Proposition 3.7, it is simple to create θ-pk-bordered words. For instance, if condition
(5) of Proposition 3.7 is used, then we can let x1 = a, x2 = aabb when θ is an antimorphic
involution on X∗ with θ(a) = b, θ(b) = a. Thus w = aaabbba is a θ-pk-bordered word where
θ-pk-border is aaab. Let Rθ be the set of all θ-palindrome words over X.

Lemma 3.9 ([7]) Let θ be an antimorphic involution on X∗ and for all a ∈ X let a ̸= θ(a).
Then for w ∈ X+, w ∈ Rθ if and only if w = xyθ(x), x ∈ X+, y ∈ X∗ with y ∈ Rθ.

Proposition 3.8 Let θ be an antimorphic involution on X∗ and for all a ∈ X let a ̸= θ(a).
If w ∈ X+ is a θ-palindrome word, then w is θ-pk-bordered.

Proof. Let θ be an antimorphic involution on X∗ and for all a ∈ X let a ̸= θ(a). Let w ∈ X+

be a θ-palindrome word. By Lemma 3.9, there exists x ∈ X+, y ∈ X∗ such that w = xyθ(x)
with y ∈ Rθ. By the definition of θ-pk-border, there exists a θ-pk-border x ∈ X+ such that
w is θ-pk-bordered. #

4 The Density of θ-bordered and θ-pk-bordered Languages

Let θ be an antimorphic involution with not identity on X∗. Recall that Dθ(1) contains
all θ-unbordered words and

∪
i≥2Dθ(i) contains all θ-bordered words. Any nonempty subset

of
∪

i≥2Dθ(i) is called a θ-bordered language and any nonempty subset of Dθ(1) is called a
θ-unbordered language. Similarly, recall that Kθ(1) contains all θ-pk-unbordered words and∪

i≥2Kθ(i) contains all θ-pk-bordered words. Any nonempty subset of
∪

i≥2Kθ(i) is called
a θ-pk-bordered language and any nonempty subset of Kθ(1) is called a θ-pk-unbordered
language. A language L ⊆ X∗ is dense if for any w ∈ X∗, there exist x, y ∈ X∗ such that
xwy ∈ L ([1]). That is, for every w ∈ X∗, X∗wX∗∩L ̸= ∅. In this section we will investigate
the density of Dθ(i), Kθ(i), i ≥ 1.

Lemma 4.1 Let θ be an antimorphic involution on X∗ and for all a ∈ X let a ̸= θ(a). Let
w be a θ-bordered word. Then there exists a θ-border v of w with lg(v) ≤ 1

2
lg(w).

Proof. Let θ be an antimorphic involution on X∗ and for all a ∈ X let a ̸= θ(a). Let w
be a θ-bordered word. Then there exists u ∈ X+ such that w = uα = βθ(u) for some
α, β ∈ X+. If lg(u) ≤ 1

2
lg(w), then we are done. Now assume that lg(u) > 1

2
lg(w). We have

lg(β) < 1
2
lg(w). There exists x ∈ X+ such that u = βx and θ(u) = xα. This in conjunction

with θ being an antimorphic involution yields that xα = θ(u) = θ(βx) = θ(x)θ(β). It follows
that x = θ(x) and α = θ(β). Then w = uα = βθ(u) = uθ(β). Take v = β. Thus v is a
θ-border of w and lg(v) < 1

2
lg(w). We are done. #

Proposition 4.1 Let θ be an antimorphic involution on X∗ and for all a ∈ X let a ̸= θ(a).
Then Dθ(i) for every i ≥ 1 are dense.

Proof. Let θ be an antimorphic involution on X∗ and for all a ∈ X let a ̸= θ(a). There
exists a ∈ X such that θ(a) = b, where a ̸= b ∈ X. We will show that Dθ(i), i ≥ 1 are dense.
First, we show that Dθ(1) is dense. By the definition of antimorphic involution on X∗, we
have awa ∈ Dθ(1). Hence Dθ(1) is dense. Next, we show that Dθ(i), i ≥ 2 are dense.
If w = λ, then aiwabi−1 = ai+1bi−1. It is clear that aj ∈ Lθ

d(a
i+1bi−1) for 0 ≤ j ≤ i − 1.

Then every word whose length is greater than i − 1 is not a θ-border of ai+1bi−1. Thus
Lθ

d(a
i+1bi−1) = {λ, a, . . . , ai−1} for some i ≥ 2. Hence X+wX+ ∩Dθ(i) ̸= ∅, i ≥ 2. Assume

that w ∈ X+. Let n = lg(w) and let x = a2n+i−1, y = a2nbi−1. Then it implies that
Lθ

d(xwy) = {λ, a, . . . , ai−1}. Indeed, on the contrary, assume that xwy = uα = βθ(u) for
some u ∈ X+ with lg(u) > i− 1. By Lemma 4.1, there are the following cases:
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(1) i− 1 < lg(u) ≤ 2n+ i− 1. In this case, u = ak+i−1 with 0 < k ≤ 2n and θ(u) = akbi−1.
This follows that akbi−1 = θ(u) = ak+i−1, a contradiction.

(2) 2n+i−1 < lg(u) ≤ 2n+i−1+ 1
2
n. That is, lg(a2n+i−1) = lg(x) < lg(u) ≤ lg(x)+ 1

2
lg(w).

In this case, there exists p, q ∈ X+ with p ≤p w and q ≤s w such that u = a2n+i−1p
and θ(u) = qa2nbi−1. This follows that qa2nbi−1 = θ(u) = θ(a2n+i−1p) = θ(p)θ(a2n+i−1) =
θ(p)b2n+i−1, a contradiction.

By above discussion, u is not a θ-border of a2n+i−1wa2nbi−1 with lg(u) > i − 1. We have
Lθ

d(xwy) = {λ, a, . . . , ai−1}. Hence Dθ(i), i ≥ 1 are dense. #

Note that for θ-pk-bordered words, Lemma 4.1 is not true. For instance, let w = aba.
Then w = ab ·a = a ·θ(ba). That is, ab ∈ Lθ

cd(w) and lg(ab) > 1
2
lg(w), but a /∈ Lθ

cd(w). That
is, nonempty θ-pk-border of w = aba is greater than 1

2
lg(w). In the following proposition,

we study the density of Kθ(i), i ≥ 1 for an antimorphic involution θ on X∗ with a ̸= θ(a)
for all a ∈ X. First, we give the following lemma.

Lemma 4.2 [8] Let θ be a antimorphic involution on X∗. Then Kθ(1), the set of all θ-
pseudoknot-unbordered words over X∗, is a dense set.

Proposition 4.2 Let θ be an antimorphic involution on X∗ and for all a ∈ X let a ̸= θ(a).
Then Kθ(i) for i ≥ 1 are dense.

Proof. Let θ be an antimorphic involution on X∗ and for all a ∈ X let a ̸= θ(a). There
exists a ∈ X such that θ(a) = b, where a ̸= b ∈ X. By Lemma 4.2, we have that Kθ(1)
is a dense set. Thus we will show that Kθ(i) for i ≥ 2 are dense. Let lg(w) = n and let
x = (ab)i−1a2n+1, y = a2n+1(ba)i−1. It follows that xwy ∈ Kθ(i) for i ≥ 2. Indeed, we
will show that Lθ

cd(xwy) = {λ, ab, (ab)2, . . . , (ab)i−1}. First, by the definition of involution
pseudoknot-border, we have (ab)j ∈ Lθ

cd(xwy) and (ab)ja /∈ Lθ
cd(xwy), for all 0 ≤ j ≤ i− 1.

Next, we consider that for every u ≤p xwy with lg(u) > i. There are the following cases:

(1) i < lg(u) ≤ 2n+ 1+ (i− 1). We have u = (ab)i−1ak where 2 ≤ k ≤ 2n+ 1. Let u = x′y′

where x′ = (ab)i−1 and y′ = ak. Then θ(x′) = (ab)i−1 and θ(y′) = bk. This implies that
xwy = (ab)i−1a2n+1wa2n+1(ba)i−1 = (ab)i−1akα′′ = β′′(ab)i−1bk for some α′′, β′′ ∈ X+. We
have a = b, a contradiction.

(2) 2n + 1 + (i− 1) < lg(u) ≤ 2n + 1 + (i− 1) + lg(w). There exists f ∈ X+ with f ≤p w
such that u = (ab)i−1a2n+1f . Let u = x′y′ where x′ = (ab)i−1 and y′ = a2n+1f . Then
θ(x′) = (ab)i−1 and θ(y′) = θ(f)b2n+1. This implies that xwy = (ab)i−1a2n+1wa2n+1(ba)i−1 =
(ab)i−1a2n+1fα′′ = β′′(ab)i−1θ(f)b2n+1 for some α′′, β′′ ∈ X+. We have a = b, a contradic-
tion.

(3) 2n + 1 + (i− 1) + lg(w) < lg(u) ≤ 2(2n + 1) + (i− 1) + lg(w). There exists an integer
k with 1 ≤ k ≤ 2n + 1 such that u = (ab)i−1a2n+1wak. Let u = x′y′ where x′ = (ab)i−1

and y′ = a2n+1wak. Then θ(x′) = (ab)i−1 and θ(y′) = bkθ(w)b2n+1. This implies that
xwy = (ab)i−1a2n+1wa2n+1(ba)i−1 = (ab)i−1a2n+1wakα′′ = β′′(ab)i−1bkθ(w)b2n+1 for some
α′′, β′′ ∈ X+. We have a = b, a contradiction.

(4) 2(2n + 1) + (i − 1) + lg(w) < lg(u). There exists an integer j with 1 ≤ j ≤ i −
1 such that u = (ab)i−1a2n+1wa2n+1(ba)j. Let u = x′y′ where x′ = (ab)i−1 and y′ =
a2n+1wa2n+1(ba)j. Then θ(x′) = (ab)i−1 and θ(y′) = (ba)jb2n+1θ(w)b2n+1. This implies that
xwy = (ab)i−1a2n+1wa2n+1(ba)i−1 = (ab)i−1a2n+1wakα′′ = β′′(ba)jb2n+1θ(w)b2n+1 for some
α′′, β′′ ∈ X+. We have a = b, a contradiction.

By above discussion, u is not a θ-border of (ab)i−1a2n+1wa2n+1(ba)i−1. This implies that
Lθ

cd(xwy) = {λ, ab, (ab)2, . . . , (ab)i−1}. Hence Kθ(i), i ≥ 1 are dense. #
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